- right-invariant differential operator
- Математика: правоинвариантный дифференциальный оператор
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Invariant factorization of LPDOs — IntroductionFactorization of linear ordinary differential operators (LODOs) is known to be unique and in general, it finally reduces to the solution of a Riccati equation [http://en.wikipedia.org/wiki/Riccati equation] , i.e. factorization of… … Wikipedia
Differential form — In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a better[further explanation needed] definition… … Wikipedia
Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) … Wikipedia
Scale-invariant feature transform — Feature detection Output of a typical corner detection algorithm … Wikipedia
D'Alembert operator — In special relativity, electromagnetism and wave theory, the d Alembert operator (represented by a box: ), also called the d Alembertian or the wave operator, is the Laplace operator of Minkowski space. The operator is named for French… … Wikipedia
Zonal spherical function — In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K invariant vector in an… … Wikipedia
Universal enveloping algebra — In mathematics, for any Lie algebra L one can construct its universal enveloping algebra U ( L ). This construction passes from the non associative structure L to a (more familiar, and possibly easier to handle) unital associative algebra which… … Wikipedia
Verma module — Verma modules, named after Daya Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. The definition of a Verma module looks complicated, but Verma modules are very natural objects, with useful properties … Wikipedia
Conformal Killing equation — In conformal geometry, the conformal Killing equation on a manifold of space dimension n with metric g describes those vector fields X which preserve g up to scale, i.e. for some function λ (where is the Lie derivative). Vector fields that… … Wikipedia
Maxwell's equations — For thermodynamic relations, see Maxwell relations. Electromagnetism … Wikipedia